会員各位

一般社団法人日本消火装置工業会第 一 部 会 長 大 木 健 二

連結送水管にステンレス鋼管を使用する場合の留意事項について(情報提供)

連結送水管にステンレス鋼管 (SUS304TPD: JIS G 3448) を使用する場合の留意事項として、 別添のとおりステンレス協会より情報提供がありましたのでご案内致します。

ご存知のとおり、ステンレス鋼管は耐食性に優れ、表面粗さが小さいことから圧力損失も少なく徐々に消火配管への普及が進んでいるところでございますが、一方で、溶接品質の確保が難しく、環境が整うと急速に腐食が進むというデメリットも併せ持っています。ステンレス協会によれば、連結送水管に使用した SUS304TPD において、溶接部位に微生物がコロニーを形成し、当該部分の腐食が急速に進行、施工後半年程度で漏水に至るケースが確認されたとのことです。連結送水管に使用する SUS304TPD の溶接加工メーカーは複数ありますが、いずれも溶接後の後処理は行っておらず、結果、微生物腐食を誘発しました。現在は、溶接後の後処理を行い、消火用水の環境下においても著しく腐食が進行することが無いよう改善したとのことです。ただし、溶接加工メーカーごとに後処理の方法は異なるとのことで、製品の採用、既納入品の対策等については個別に相談させて頂きたいとの申し入れがありました。

つきましては、連結送水管にステンレス鋼管を使用する際の参考として、以上のとおり情報提供 申し上げます。

以 上

連結送水管に SUS304TPD を使用する場合の留意点

ステンレス協会 配管システム普及委員会

昨今、連結送水管においてステンレス鋼鋼管は軽量で施工性も良く、耐食性にも優れた性能を発揮する事から 採用が急速に進んでおりますが、稀に水質、微生物、異物混入が原因と思われる腐食事例が確認されております。

一般に、微生物に起因する腐食が、種々の金属材料等に発生することが知られています。そして、平成 18 年から本格的に連結送水管へ採用されている一般配管用ステンレス鋼鋼管においても、1100 件を超える施工数中で、以下の 5 件で微生物が関与していると推定される漏水が確認されました。

本資料では、ステンレス連結送水管での腐食事例の発生を受け、腐食事例を紹介するとともにステンレスの優れた耐食性を発揮するための留意点を記載します。

連結送水管での腐食事例(詳細は添付資料)

事	施設種類	発生箇所	位置	詳細	材質	配管内に当初充水され	配管内の元の水の	微生物腐食の
例						ていた水	水質	推定根拠
1)	商業施設		直管と曲管 との溶接部 管底部	管底部	送部 SUS304TPD	厨房排水処理水	塩化物イオン高 (最高値: 157mg/0)	過酸化水素の 検出(微生物 活動の痕跡)
2	オフィスビル					工業用水 (河川水の再生水)	塩化物イオン高 (最高値:150mg/0)	微生物の検出
3	オフィスビル・ 商業施設	横引き配管				防火水槽内に溜め置き していた水道水	不明	微生物の検出
4	商業施設				水道水 (消防試験時の 水質は不明)	塩化物イオン高 (最高値:81mg/0)	高濃度の 細菌検出	
(5)	オフィスビル					水道水 (消防試験時の 水質は不明)	塩化物イオン低 (最高値:32mg/ℓ)	微生物の検出

いずれも、鋼種 SUS304 の薄肉管が連結送水管(湿式)に使用された事例で、通水後1年以内の短期間で漏水が発生しており、腐食箇所は横引き配管の管底部かつ直管と曲管の溶接部に集中しています。また全ての事例において、微生物または微生物活動の痕跡が確認され、一部は他の水質との複合も推測されます。

第三者機関に調査依頼をした結果、いずれの事例からも、材料、溶接部の溶接不良(バックシール不足等)といった異常はないことが確認されました。更に、水質調査による微生物の検出、腐食部断面観察によるインク壷状の確認などから、微生物腐食が疑われるとの推察に至りました。

連結送水管のような滞留水条件下における微生物腐食への対策として、以下の方策が有効である事が各種文献で報告されています。

【使用する水側での対策】

井戸水や工業用水、河川水などは、微生物が多く存在する可能性が否定できず、腐食のリスクが増す可能性があります。そのため、腐食リスクを出来るだけ低減させるには"水道水"を使用することが有効であると考えます。その他の水の使用については、会員各社へご相談下さい。

また、殺菌剤の投与は、それ自体が金属を腐食させる要因となるものが多い為、推奨致しません。

【材料側での対策】

突合せ溶接部に腐食が発生していることから、溶接部の耐食性の低下を防止すること、及びバイオフィルムの付着を抑制する対策が有効であると考えられます。

<溶接部の酸洗> 参考文献番号:1)~4)

管内面の溶接部を酸洗し、酸化スケールを除去し、不動態被膜の再生を促進する方法。

<溶接部の電解研磨> 参考文献番号:1)~8)

管内面の溶接部に電解研磨を施し、酸化スケールを除去するとともに、不動態被膜を強制的に再生させる。同時に溶接部の表面を滑らかにし、凹凸を低減させ、微生物等の付着を抑制する方法。

<溶接時の酸化スケールの生成防止> 参考文献番号:1),2)

溶接をする際、アルゴンガスや窒素ガス等を配管内に充満させ、十分にバックシールドをした状態で溶接を行う。ステンレス鋼鋼管の耐食性を損なう酸化スケールの生成を低減する方法。

会員各社では、連結送水管用としてステンレス鋼鋼管を安心してご使用いただくために溶接部の腐食リスク低減 対応を検討・実施しております。詳しい内容については会員各社にお問い合わせ願います。

【会員メーカー問い合わせ先 (順不同)】

- ○ジャパン・エンヂニアリング㈱ 本社 営業本部 (TEL: 03-3945-1471)
- ○シンワ工業㈱ 本社 営業部 (TEL: 03-3947-0171)
- ○㈱多久製作所 品質保証部 (TEL: 0748-65-1287)
- ○(株)永島製作所 東京営業所 (TEL: 03-6262-8704)
- ○ノーラエンジニアリング ㈱ 東京本社 技術部(TEL: 03-3221-1265)

以上

ステンレス協会 配管システム普及委員会 〒103-0025

東京都中央区日本橋茅場町 3-2-10(鉄鋼会館) TEL (03)3669-5691(代)

参考文献)

- 1) 中野 幸一,安西 敏雄:社会環境と微生物のかかわりー微生物誘起腐食のメカニズムとその防止策ー,高田技報,16巻(2006),P23
- 2) 東 茂樹, 幸 英昭: ステンレス鋼溶接スケール生成部の耐食性劣化とその防止方法, 配管技術, 40 (8) (1991), P78
- 3) 幸 英昭: 好気性環境下における微生物腐食の研究と未解明点, 材料と環境 (2014), P25
- 4) 佐々木 英次: 微生物腐食、材料と環境(1997)、P760
- 5) 天谷 尚:金属材料表面への微生物の付着と微生物腐食(MIC), 高温学会誌, 35(3)(2009), P116
- 6) 西尾 純一, 幸 英昭: ステンレス配管の現地電解研磨施工による微生物腐食対策, 材料と環境, 58 (6) (2009), P226
- 7) 菊地 靖志: 微生物による腐食・劣化、材料と環境、47(12)(1998)
- 8) 菊地 靖志, 松田 福久: 溶接部の微生物腐食, 溶接学会誌, 64(2)(1995)

添付

連結送水管の腐食事例

建物概要	用した 例 一 商業施設					
配管用途	連結送水管					
配管材質	JIS G3448 一般配管用ステンレス鋼鋼管 SUS304TPD					
	・当初の充水: 厨房排水処	 L理水				
	・消防検査時の使用水:					
	項目	6 箇所で採水した配管内水の 厨房排水処理水		(参考)		
(漏水時の配管内採				水道水		
取水)	Mアルカリ度(mg/L)	最大:110/最小:70	103	44		
	塩化物イオン(mg/L)	最大:157/最小:119	110	22		
	全有機炭素(TOC)(mg/L)	最大:5.0/最小:1.8	4. 2	0.6		
		最大: 4000/最小 100	0	0		
	残留塩素(mg/L)	0.05 未満	2. 6	0. 37		
	漏水部内面の濡れた箇所 過酸化水素の発生は微生 漏水部抜管時に採取した から電位が上昇し、約2ヶ 自然電位測定前後の一般和 ていた。 【写真①-1】 400 350 300 250 200 150 100 50 0	最高值 No.5-1 No.5-3	でと、紫色に変色が 【写真①-2】 ②変化を測定した結 に至った。 ²⁾ 【図① 試験後は17,100 個	果、測定開)-1】]/mL に増加		
	電灯	立計測月日	4 4 70 11			
		【図①-1】				
要因推察				A 200 -		

以上により、水質・微生物腐食といった複数の因子が腐食の要因と推察される。

②工業用水を使用した例

建物概要	オフィスビル					
配管用途	連結送水管					
配管材質	JIS G3448 一般配管用ステンレス鋼鋼管 SUS304TPD					
	・当初の充水: 工業用水 (河川水の再生水)					
	・消防検査時の使用水 : 不明					
	3倍	所で採水した配管内水の				
(漏水時の配管内採		がでは、なって記される。				
取水)	銅(mg/L) 最力	て:0.08/最小:0.01未満				
4~14		C: 0.10/最小: 0.05未満				
		最大:150/最小:8.7 最大:935/最小:348				
腐食概要	通水後、約半年で漏水発覚。					
例以例及	管外面の溶接部近傍より黒色物の滴下に	て上り温水を確認 【写直②-1】				
		は、横引き配管の管底部に集中。腐食箇所の内				
	側には虹色の変色が確認された。【写真②					
		-				
	配管内の水からは、ステンレスの腐食に関与するとされる細菌(鉄細菌)が検出され、					
	別の腐食箇所からも腐食生成物中に高い有機物の含有を示唆する結果(強熱減量30%)が					
	得られた*。 腐食した配管の撤去時に採取できた水の塩化物イオン濃度は、最高で150mg/Lと高					
		の塩化物イオン張及は、取同で150mg/Lで同かで内視鏡にで観察した充水状態の配管内には、				
	つた。また、例及した配官かり触れた世直	CYR焼にて観祭した工小仏態の配官とには、				
	ク粉の河 佐畑 ボヨさね 7 世紀 マキュキ ・	安古(の 0】				
	多数の浮遊物が見られる状態であった。	写真②-3】				
	多数の浮遊物が見られる状態であった。	写真②-3】				
	多数の浮遊物が見られる状態であった。【	写真②-3】				
	【写真②-1】					
		【写真②-2】				
	【写真②-1】	【写真②-2】 *強熱減量:				
	【写真②-1】	【写真②-2】 *強熱減量: 採取した腐食生成物を 600℃前後				
	【写真②-1】	【写真②-2】 *強熱減量: 採取した腐食生成物を 600℃前後まで加熱し、加熱前と後での重量差。				
	【写真②-1】	【写真②-2】 *強熱減量: 採取した腐食生成物を 600℃前後まで加熱し、加熱前と後での重量差。 減量分は主に有機物と想定される				
	【写真②-1】	【写真②-2】 *強熱減量: 採取した腐食生成物を 600℃前後まで加熱し、加熱前と後での重量差。減量分は主に有機物と想定されるため、微生物腐食の可能性が考えら				
	【写真②-1】	【写真②-2】 *強熱減量: 採取した腐食生成物を 600℃前後まで加熱し、加熱前と後での重量差。減量分は主に有機物と想定されるため、微生物腐食の可能性が考えら				
要因推察	【写真②-1】 07.4m	【写真②-2】 *強熱減量: 採取した腐食生成物を 600℃前後まで加熱し、加熱前と後での重量差。減量分は主に有機物と想定されるため、微生物腐食の可能性が考えられる。				
要因推察	【写真②-1】 07.4m 【写真②-3】	【写真②-2】 *強熱減量: 採取した腐食生成物を 600℃前後まで加熱し、加熱前と後での重量差。減量分は主に有機物と想定されるため、微生物腐食の可能性が考えられる。				
要因推察	【写真②-1】 (写真②-3】 材料の成分に問題はなく、溶接部にもましかし、水質として塩化物イオンが高く	【写真②-2】 *強熱減量: 採取した腐食生成物を 600℃前後まで加熱し、加熱前と後での重量差。減量分は主に有機物と想定されるため、微生物腐食の可能性が考えられる。				
要因推察	【写真②-1】 (写真②-3】 材料の成分に問題はなく、溶接部にもなしかし、水質として塩化物イオンが高く横引き配管の管底部に腐食が集中してい	【写真②-2】 *強熱減量: 採取した腐食生成物を 600℃前後まで加熱し、加熱前と後での重量差。減量分は主に有機物と想定されるため、微生物腐食の可能性が考えられる。				
要因推察	【写真②-1】 (写真②-3】 材料の成分に問題はなく、溶接部にもなしかし、水質として塩化物イオンが高く横引き配管の管底部に腐食が集中してい	【写真②-2】 *強熱減量: 採取した腐食生成物を 600℃前後まで加熱し、加熱前と後での重量差。減量分は主に有機物と想定されるため、微生物腐食の可能性が考えられる。 発敏化等の加工不良は見られなかった。 、、腐食しやすい水質であった。 、、高食しやすい水質であった。 、る点は、異物(鉄粉等)の混入が懸念される。 「機物の含有を示唆する結果が得られたため、				
要因推察	【写真②-1】 (写真②-3】 材料の成分に問題はなく、溶接部にも会しかし、水質として塩化物イオンが高。横引き配管の管底部に腐食が集中して、他の腐食箇所では腐食生成物中に高いる腐食部近傍で微生物が存在していた可能性	【写真②-2】 *強熱減量: 採取した腐食生成物を 600℃前後まで加熱し、加熱前と後での重量差。減量分は主に有機物と想定されるため、微生物腐食の可能性が考えられる。 発敏化等の加工不良は見られなかった。 、腐食しやすい水質であった。 、る点は、異物(鉄粉等)の混入が懸念される。 「機物の含有を示唆する結果が得られたため、				

③防火水槽に溜めおきした水道水を使用した例

建物概要	オフィスビル・商業施設				
配管用途	連結送水管				
配管材質	JIS G3448 一般配管用ステンレス鋼鋼管 SUS304TPD				
管内水	・当初の充水 : 防火水槽に溜めおきした水道水				
	・消防検査時の使用水 : 不明				
水質	項目	3 箇所で採水	くした配管内水の分析値の最大		
(配管交換後に水道	(共日	値/最小値			
水を充水した後の採	рН	录小:7.8			
取水)	電気伝導率(μ S/cm)	最大:242/占	長小: 146		
	M アルカリ度(mg CaC	O3/I) 最大:57.4/	最小: 36.0		
	炭酸水素イオン(mg/l)	最大:70.0/	最小: 37.0		
	塩化物イオン(mg/l)	最大:21.4/	最小: 9.6		
	硫酸イオン (mg/l)	最大:27.9/	最小: 15.7		
腐食概要	腐食箇所は、横引き配確認された。【写真③-2】配管内の水からはステされ、腐食部の断面観察腐食部表面の光学顕微	り、黒色物の滴下が確 管の管底部に集中してさ したシレスの腐食に関与するではインク壷状の腐食	認された。【写真③-1】 おり、腐食箇所の内側には虹色の変色がるとされる細菌(硫黄酸化細菌)が検出 形態を確認した。【写真③-3】 ン状の選択腐食を確認した。【写真③-4】 【写真③-2】		
要因推察		<u>0.5m</u> ×25 (3)-3] (3)-3 (3)-3 (3)-3 (4)-3	【写真③-4】 等の加工不良は見られなかった。		
	漏水発生当時の水質は、漏水後に一度交換されていることから不明。 横引き配管の管底部に腐食が集中している点は、異物(鉄粉等)の混入が懸念される。 腐食部の断面(インク壷状の腐食)及び表面(スケルトン状の選択腐食)は、微生物腐食 特有の形態を示している。 ³ 以上により、水質は不明であるが、異物混入・微生物腐食 といった複数の因子が腐食の要因と推察される。				

④消防検査時の水質が不明の例

1)消防検査時の水質が不	、明の例			
建物概要	商業施設			
配管用途	連結送水管			
配管材質	JIS G3448 一般配管用ステンレス鋼鋼管 SUS304TPD			
管内水	・当初の充水 : 水道水・消防検査時の使用水 : 不明			
水質	75.0	配管から採取	水道局水質分析値の平成 26 年度・平成	
(漏水時の配管内採取	[項目	した水の分析値	27 年度 2 年間の最大値	
水)	Mアルカリ度(mg/L)	181	_	
	塩化物イオン(mg/L)	81	26.9	
	一般細菌数(CFU/mL)	580	0.3	
	残留塩素(mg/L)	0.05 未満	0.4	
	竣工後、約6ヶ月で漏水が発覚。 管の外面溶接部近傍に、孔食が確認された。【写真④-1】 管内面の腐食箇所には錆こぶが認められた。【写真④-2】 採取した配管内の水からは一般細菌が 580CFU/mL 検出された。			
再口坐 索	写真④		【写真④-2】	
要因推察	配管内の水質は塩化物イオン81mg/Lと、水道水と比べて高い値であった。			
	一般細菌も580CFU/mLと高い値であった。			
以上により、水質と微生物代謝といった複数の因子が腐			四丁が腐良の晏囚と推祭される。	

⑤消防検査時の水質が不明の例

建物概要	オフィスビル					
配管用途	連結送水管					
配管材質	JIS G3448 一般配管用ステンレス鋼鋼管 SUS304TPD					
管内水	・当初の充水 : 水道水					
	・ 消防検査時の使用水 : 消防ポンプ車の水 (水質不明)					
 水質						
(漏水時の配管内採	項目	3箇所で採水した配管内水の 分析値の最大値/最小値				
取水)	рН	最大:7.8/最小:7.6				
4~11/	電気伝導率 (μS/cm)	最大:330/最小:290				
	総アルカリ度 (mgCaCO3/L)	最大:68/最小:55				
	塩化物イオン (mg/L)	最大:32/最小:19				
	硫酸イオン (mg/L) 炭酸水素イオン (mg/L)	最大:38/最小:30 最大:69/最小:53				

腐食概要	竣工後、約6ヶ月で漏水が発覚	0				
	外面溶接部近傍より、黒色物が確認された。腐食箇所は、横引き配管の管底部に集中					
	していた。また、配管内面には錆り	蒥のようなものが見られた。【写真⑤·1·2】				
	腐食部の断面観察では微生物腐食特有の壺状腐食の形態を観察した。【写真⑤-3】					
	配管内の水からは、ステンレスの腐食に関与するとされる細菌(鉄細菌、鉄酸化細菌					
	硫酸塩還元菌)が検出された。					
	【写真⑤-1】管外面	国 【写真⑤-2】管内面				
要因推察	配管内の水質もステンレスにと	第にも鋭敏化等の加工不良は見られなかった。 って問題となる水質ではなかった。腐食は横引き配管 犬形態の腐食、また、配管内の水からはステンレスの				
	腐食に関与する細菌が検出された。	以上により、微生物腐食が疑わしいが ³ 横引き管の 間腐食を起点とした複合要因と推察される。				

【参考文献】

- 1) 幸 英昭:材料と環境 2014、A-101
- 2) 西川光昭、原田和加大、足立俊郎、名越敏郎:日新製鋼技報 No. 77 (1998)、25 頁
- 3) 菊池靖史・K. R. スリクマリー: 鉄と鋼 vol. 88(2002年) No. 10、34頁